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ABSTRACT

This paper provides a fully data-driven procedure for estimating the
locations of jump discontinuities occuring in the kth derivative of
an unknown regression function. The basic ingredients for the proce-
dure are a two-step method for estimating the locations of the jump
discontinuities, a bootstrap procedure for selecting the smoothing
parameters involved in this estimation, and a cross-validation method
for estimating the number of discontinuities in a derivative function.
The paper extends ideas developed for change point detection in the
regression function itself by Gijbels and Goderniaux [Gijbels, I.,
Goderniaux, A.-C. (2004). Bandwidth selection for change point
estimation in nonparametric regression. Technometrics 46:76–86].
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A simulation study illustrates the performance of the procedure,
and applications to some real data demonstrate its use.

Key Words: Abrupt change; Bandwidth; Bootstrap; Cross-
validation; Derivative function; Least-squares fitting; Local
polynomial regression.

1. INTRODUCTION

Jump discontinuities represent only one type of irregularities that
might occur in an otherwise smooth regression function. Other types of
irregularities include changes in a derivative of the regression function.
An example is a jump discontinuity in the first derivative which would
appear as an ‘‘abrupt change in the direction’’ of the regression function
itself. A jump discontinuity in the second derivative would appear as a
‘‘shoulderpoint’’ in the regression function itself. Such type of irregulari-
ties may show up when estimating regression curves in applications. Con-
sider for example the Motorcycle data, reported on by Schmidt et al.
(1981). These are 123 measurements on test objects that underwent a
simulated motorcycle collision. Recorded were the time (in milliseconds)
after the impact (the variable X ) and the head acceleration (in g) of the
test object (the variable Y ). Looking at the raw data, presented in Fig.
5.5 in Sec. 5, one can ‘‘suspect’’ some changes in the direction of the
acceleration somewhere around roughly 15, 23 and 32 milliseconds. In
Sec. 5 we will analyze this data set using our data-driven procedure for
detecting discontinuities in derivatives of the regression function.

Furthermore, if the interest is in estimating the kth derivative of a
regression function, then it is better to obtain an estimator that is adapted
to possible jump discontinuities in the derivative function. See Fig. 5.1
in Sec. 5, in which we represent three different regression functions
(upper panels) for which a jump discontinuity occurs at the point 0.5
in the first derivative, for Figs. 5.1 (a) and (b), and in the second deriva-
tive for Fig. 5.1 (c). The lower panels of Fig. 5.1 depict the corresponding
true derivative functions as solid lines (first derivatives in Figs. 5.1 (d) and
(e), and the second derivative function in Fig. 5.1 (f )). Presented in these
lower panels are also the estimated derivative curves, adapted to the
estimated jump discontinuities in the derivative functions (the dotted
curves) together with smooth estimates of the derivative curves (the
long-dashed curves). The estimates are based on simulated samples of size
n ¼ 100. Figure 5.1 clearly reveals that the estimates of the derivative
functions assuming smooth derivatives are quite different from the

852 Gijbels and Goderniaux



ORDER                        REPRINTS

estimates of the derivative functions allowing for possible jump points.
For more details of these and other simulated examples see Sec. 5.

There are various approaches in the literature dealing with non-
parametric regression with abrupt changes in a derivative. Hall and
Titterington (1992) proposed a kernel-based estimation method to
estimating curves with peaks and edges and Jose and Ismail (1997) rely
on the analysis of residuals. Müller (1992) and Wu and Chu (1993),
among others, have suggested methods based on differences of non-
parametric kernel estimates. Chu (1994) estimated change points in a
nonparametric regression function via kernel density estimation using
binning. See also Qiu (1994) for kernel based methods when the number
of change points is unknown. Eubank and Speckman (1994), Speckman
(1994,1995) and Cline et al. (1995) considered semiparametric spline-
based methods. Local polynomial procedures have been used by
McDonald and Owen (1986), Horváth and Kokoszka (1997), Qiu and
Yandell (1998) and Spokoiny (1998), among others. For wavelet-based
methods see for example Wang (1995) and Raimondo (1998). All
methods have in common that they involve the choice of some kind
of smoothing parameters, and the performance of the methods often
depends heavily on these choices.

In this paper we provide a fully data-driven procedure for estimating
jump discontinuities in a derivative curve. The method also includes a
data-driven way of determining the number of discontinuities in a deriva-
tive curve. The data-driven procedure developed here is a generalization
of the procedure for estimating regression curves with jump dis-
continuities proposed by Gijbels et al. (1999, 2004) and studied further
by Gijbels and Goderniaux (2004). Such a generalization requires an
appropriate choice of a diagnostic function and a parametric family for
least-squares fitting when dealing with estimation of a (known) number
of jump discontinuities. In order to estimate the number of discon-
tinuities we rely on a cross-validation method which basically combines
cross-validation ideas discussed in Müller et al. (1987) in the context of
bandwidth selection for (smooth) derivative curves and in Müller and
Stadtmüller (1999) in the context of estimation of unsmooth regression
functions. So, this paper brings together several ideas that have been used
in different contexts, and exploits them in the current context of detecting
abrupt changes in a regression function and=or its derivatives. It is, to
our knowledge, the first paper proposing a fully data-driven method
for the studied problem.

The paper is organized as follows. In Sec. 2 we focus on the case of
jump discontinuities in the first derivative. We introduce the estimation
method and the algorithm to choose the bandwidth parameters.
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The generalization to the case of jump discontinuities in a higher order
derivative is provided in Sec. 3. In Sec. 4, we discuss a cross-validation
criterion to estimate the number of discontinuities appearing in the kth
derivative of the regression function. The performance of the data-driven
detection procedure is illustrated via a simulation study in Sec. 5. In that
section we also present the analysis of the data set described above. In a
last section, we provide some discussion.

2. ESTIMATION OF JUMP DISCONTINUITIES

IN THE FIRST DERIVATIVE

2.1. Statistical Model

We assume that a sample of n data pairs w ¼ fðX1;Y1Þ; . . . ; ðXn;YnÞg
is observed, generated from the model

Yi ¼ gðXiÞ þ ei; 1 � i � n:

We consider design points Xi which are either regularly spaced on
I ¼ ½0; 1� or are the order statistics of a random sample from a distribu-
tion having a density f supported on I . The errors ei are assumed to
be independent and identically distributed with zero mean and finite
variance s2. We suppose that gð�Þ, the unknown regression function is
such that its first derivative is continuous except at an unknown finite
number of jump discontinuities. Denote this unknown number of jump
discontinuities by n.

We consider first the case of a single jump discontinuity, appearing at
the location x0 2 �0; 1½ in the first derivative. The generalization to the
case of more than one discontinuity in the derivative function is discussed
in Sec. 2.4. In Sec. 3 we generalize the method to estimation of the
locations of jump discontinuities in the kth derivative of g.

2.2. Estimation Procedure

We adapt the two-step estimation method as discussed by Gijbels
et al. (1999, 2004) in the case of jump discontinuities in the regression
function itself, to the case of jump discontinuities in the first derivative.
This adaptation is straightforward, and consists of two steps: in a first
step a preliminary estimator of x0, the location of the jump discontinuity
in the first derivative, is obtained via the evaluation of an appropriate
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diagnostic function; in a second step an improved estimator of x0 is
obtained by least-squares fitting of an appropriate parametric model in
a small interval around the initial estimator of x0.

2.2.1. Diagnostic Step

A diagnostic function is used to obtain a first estimator ~xx0 of x0.
A way to detect a jump discontinuity in the first derivative is by looking
at locations with high second order derivatives. So we suggest to consider
the second derivative of a Nadaraya–Watson kernel estimator (see
Nadaraya, 1964; Watson, 1964) and define the diagnostic function D by

Dðx; h1Þ ¼ @2

@x2

Pn
i¼1 Kfðx� XiÞ=h1gYiPn
i¼1 Kfðx� XiÞ=h1g

� �
; ð2:1Þ

where K is a compactly supported twice differentiable kernel function and
h1 > 0 is a bandwidth. A first rough estimator of x0 is then given by

~xx0 ¼ argmax
x2�vh1;1�vh1½

jDðx; h1Þj;

where ½�v; v� denotes the support of K .
Note that in case of equally-spaced design we can also use the second

derivative of the numerator of a Nadaraya–Watson kernel estimator as a
diagnostic function:

Dðx; h1Þ ¼ 1

nh31

Xn
i¼1

K ð2Þfðx� XiÞ=h1gYi ;

since this will be proportional to an estimator for the second derivative of
the regression function.

2.2.2. Least-Squares Step

The aim of this second step is to improve the initial estimator ~xx0 of
x0. Therefore we construct an interval concentrated around ~xx0, denoted
as ½~xx0�h2;~xx0þh2�, with h2>0, to which x0 belongs with high probability.
Denote by fi1; i1 þ 1; . . . ; i2g the set of integers i such that Xi 2
½~xx0 � h2; ~xx0 þ h2�. Suppose that the change point occurs between the two
design points Xi0 and Xi0þ1. We discuss how to estimate i0 and hence x0.
To improve the performance of ~xx0, we fit via the least-squares method a
linear function (a first order polynomial) to the left and the right of the
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point Xi0 in the interval ½~xx0 � h2; ~xx0 þ h2�. More precisely, we search for
the value of i0 that minimizes the sum of squares

Xi0
i¼i1

Yi � ða1 þ b1XiÞf g2þ
Xi2
i¼i0þ1

Yi � ða2 þ b2XiÞf g2 ð2:2Þ

where

bj ¼
Psj

i¼rj
ðXi � XjÞðYi � YjÞPsj
i¼rj

ðXi � XjÞ2
and aj ¼ Yj � bjX j

with r1 ¼ i1; s1 ¼ i0 and r2 ¼ i0 þ 1; s2 ¼ i2. The quantities a1 and b1, and
a2 and b2 are nothing but the usual estimated coefficients of a linear
regression model.

Denote by {̂{0 the minimizer of the sum of squares (2.2). The final
estimator for x0 is then defined as the mid-point between X{̂{0 and X{̂{0þ1:

x̂x0 ¼ 1

2
X{̂{0 þ X{̂{0þ1ð Þ:

A clear advantage of this two-step method above a one-step method
is the following: if the first step results in a bad estimation of the true dis-
continuity point, the second step can still correct for this. See Gijbels et al.
(1999) for illustrations of this important advantage in the regression case.
See also Gijbels and Goderniaux (2004) for a finite sample comparison of
this two-step method with some one-step procedures in the regression
case. The comparison in the latter paper illustrates the advantages of this
two-step procedure, and discusses several interesting options in the
procedure. Another two-stage procedure for estimating change-points
in regression models has been proposed by Müller and Song (1997).

2.3. Choice of the Bandwidth Parameters

The two-step method described above involves two smoothing para-
meters, the bandwidths h1 and h2. The choice of these parameters is
rather crucial. We now discuss data-driven choices of these bandwidths.

The diagnostic function depends on the bandwidth h1, but at a jump
discontinuity it will consistently be large for many h1 values. We then
identify the jump discontinuity as the point x in the neighbourhood of
which jDðx; h1Þj is consistently large for a range of values of h1, and take
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the smallest h1 value for which this still holds (i.e., decreasing the h1 value
further would introduce artificial peaks at other locations). We consider
a set of decreasing h1 values, namely h1;i ¼ h0r

i, for i ¼ 0; 1; 2; . . . ; with
h0 > 0 and 0 < r <1. The choice of the biggest h1 value in this set
(i.e., the value h0) and the choice of the multiplication factor r are not
important. Safe choices are h0 big enough (say up to at most half of
the length of the domain of the regression function) and r close to one.
See Gijbels and Goderniaux (2004) for more details when dealing with
detection of jump discontinuities in the regression function itself.

The choice of the bandwidth h2 is also crucial since the least-squares
fit with a piecewise linear function will be quite bad if the interval
½~xx0 � h2; ~xx0 þ h2� is too large such that the unknown function g is far
from a piecewise linear function in that interval. Suppose that we have
obtained an estimator {̂{0 (resp. x̂x0) of i0 (resp. x0) by the two-step method
explained in Sec. 2.2, using the data-driven choice of h1 as explained
above and a certain fixed bandwidth h2. The estimator {̂{0 is integer-valued
and may differ in absolute value from the theoretical (random) i0 by 0, 1,
2, . . . . Of course we would like the estimator {̂{0 to be equal to i0 with high
probability. For choosing the bandwidth h2 we propose a bootstrap
procedure to estimate Pð{̂{0 � i0 ¼ 0Þ for a large set of candidate h2 values,
denoted as h2; j; j ¼ 0; . . . ;H. We then select that bandwidth value h2 for
which the bootstrap estimate of the probability Pð{̂{0 � i0 ¼ 0Þ is largest.
The bootstrap algorithm for estimating this probability reads as follows
(see also Gijbels et al., 2004).

Step 1. Estimation of g and Computation of Residuals.

Let x̂x0 ¼ 1
2 X{̂{0 þ X{̂{0þ1ð Þ denote the estimator introduced in Sec. 2.2.

Using local linear regression (see for example Fan and Gijbels, 1996),
with cross-validation bandwidth selector, we construct ĝg on ½0; x̂x0� and
½x̂x0; 1�. We define ~eei ¼ Yi � ĝgðXiÞ for i ¼ 1; . . . ; n, and �ee the mean of ~eei.
Finally, we put êei ¼ ~eei � �ee, the centralized estimated residuals.

Step 2. Monte Carlo Simulation.

Conditional on the observed sample w ¼ fðX1;Y1Þ; . . . ; ðXn;YnÞg, we
consider e�1; . . . ; e

�
n a resample drawn randomly with replacement from the

set êe1; . . . ; êen. We define

Y �
i ¼ ĝgðXiÞ þ e�i ; i ¼ 1; . . . ; n: ð2:3Þ

Then w� ¼ fðX1;Y
�
1 Þ; . . . ; ðXn;Y

�
n Þg is the bootstrap version of w.
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Step 3. Determination of the Bootstrap Probability.

Using the method described in Sec. 2.2, we compute the analogue {̂{�0
and x̂x�0 ¼ 1

2 ðX{̂{�
0
þ X{̂{�

0
þ1Þ of {̂{0 and x̂x0 for the resample w� rather than

the sample w. With B bootstrap replications, we have B values of {̂{�0,
denoted by {̂{�b0 ; b ¼ 1; 2; . . . ;B, and we evaluate the discrete probability

Pð{̂{�0 � {̂{0 ¼ 0 j wÞ via
1

B

XB
b¼1

#fb : {̂{ �b0 ¼ {̂{0g:

With this bootstrap algorithm we have a data-driven procedure for
estimating the jump discontinuity in the derivative curve: h1 is automati-
cally chosen as indicated above, and the bandwidth h2 in the least-squares
step is taken to be that bandwidth from the set of possible bandwidths for
which the bootstrap estimate of the probability Pð{̂{0 � i0 ¼ 0Þ is largest.

Note that with this data-driven procedure we opted for allowing for
two possibly different bandwidths in the two steps of the estimation
method. Alternatively, one could consider taking the same bandwidths
in the diagnostic and the least-squares step, and select that single band-
width via the bootstrap selection procedure described above. Both
alternative data-driven procedures have been evaluated via extensive
simulation by Gijbels and Goderniaux (2004) in the context of detecting
jump discontinuities in the regression function itself. The conclusion was
that the more general and more flexible two bandwidths option performs
slightly better and hence we opted for this here too.

Note also that for estimating g in the bootstrap algorithm we
estimate the jump point of the first derivative, and then estimate via local
linear fitting the function g on each of the two intervals separated by the
estimated jump point. As always in practice, the estimated curves are
calculated for a grid of points, as fine as one wants. For points in between
two grid points the value of the estimate is obtained by simple linear
interpolation. In our bootstrap implementation we did not force the
two local fits on both sides to have the same value at the change point
location, since both values are very close in any case (given the continuity
of the underlying g). The two local fits could be joined using linear inter-
polation in order to obtain a continuous estimate on the whole domain
(but again, there is no real need for this). This method of estimating
separately on the segments determined by the estimated jump point
(of the first derivative) is surely not the most efficient way for estimating
an unknown regression curve, knowing that the curve shows a jump point
in its derivative. See also Sec. 6 for some further discussion.
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2.4. The Case of More Than One Jump Discontinuity

The generalization to more than one jump discontinuity is quite
straightforward, at least to some extent. Assume that there are n jump
discontinuities in the first derivative. One would then look for the n local
maxima in the diagnostic function jDðx; h1Þj defined in (2.1), and would
improve upon initial estimates of the locations by taking a small interval
around each initial estimate and fitting via least-squares piecewise linear
functions on each interval. Although this seems straightforward, we are
not recommending to use this in practice. The reason is that the identifi-
cation of local maxima corresponding to the jump discontinuities can be
somewhat cumbersome. This identification problem can already be an
issue when dealing with one single jump discontinuity, and is even
more an issue when dealing with two or more jump discontinuities (well
separated or not). In short, the identification problem might occur when
handling functions g for which the derivative shows steep decreasing or
increasing parts, which can blur the detection of jump points. It should
be noted that any estimation method will show difficulties with such
cases, not only the diagnostic function considered in this paper. For
the specific case of our diagnostic function, this would mean that the
diagnostic function could achieve its maximum at such points of steep
increase or decrease. The solution to the problem is not so difficult
though, and consists of a carefully-designed iterative algorithm which
tracks back the maximum (or local maxima) associated to a jump dis-
continuity. For details of this identification problem and the iteration
algorithm as a remedy for it, we refer the readers to Gijbels et al.
(1999, 2004) or Gijbels and Goderniaux (2004).

In case of more than one jump discontinuity, the above mentioned
identification problem can even be more severe, and hence in this case
we recommend to use as a default the iterative algorithm which locates
the local maxima of the diagnostic function associated to the jump
discontinuities.

3. GENERALIZATION FOR DETECTING JUMP

DISCONTINUITIES IN HIGHER

ORDER DERIVATIVES

We now discuss how to generalize the data-driven procedure for
detecting discontinuities in the kth derivative of the regression function.
Suppose that the function g is such that its kth derivative is continuous
except at a finite number of unknown points. For simplicity we restrict
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to the case of equally-spaced design points and as a diagnostic function
we use the ðk þ 1Þth derivative of the numerator of a Nadaraya-Watson
kernel estimator:

Dðx; h1Þ ¼ 1

nhkþ2
1

Xn
i¼1

K ðkþ1Þfðx� XiÞ=h1gYi;

where K is a compactly supported (½�v; v�) kernel function that is ðk þ 1Þ
times differentiable. For all other design cases it is preferable to work
with the ðk þ 1Þth derivative of the Nadaraya–Watson kernel estimator
or any other consistent nonparametric estimator of the unknown
regression function. For simplicity we explain the procedure in case of
only one discontinuity. Generalizations to more than one jump point
are dealt with as indicated in Sec. 2.4 using the appropriate diagnostic
function.

An initial estimator of the location x0 of the jump discontinuity in
the kth derivative of the regression function is given by

~xx0 ¼ argmax
x2�vh1;1�vh1½

jDðx; h1Þj:

This rough estimator is then refined by considering a small interval
around this initial estimator and fitting via the least-squares method a
piecewise kth order polynomial in this interval. More precisely, assuming
that the jump point x0 falls between Xi0 and Xi0þ1, and denoting by
fi1; i1 þ 1; . . . ; i2g the set of all indices i for which Xi 2 ½~xx0 � h2;
~xx0 þ h2�, then we estimate i0 by {̂{0 the minimizer of the following sum
of squares:

Xi0
i¼i1

Yi �
Xk
j¼0

ajX
j
i

( )2

þ
Xi2
i¼i0þ1

Yi �
Xk
j¼0

bjX
j
i

( )2

:

The coefficients aj ; bj; j ¼ 0; . . . ; k are the usual coefficients from a global
least-squares fit with a polynomial of order k, and are given by

a ¼ ða0; . . . ; akÞT ¼ ðXTXÞ�1XTY and

b ¼ ðb0; . . . ; bkÞT ¼ ðX 0TX 0Þ�1X 0TY 0;
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where the superscript T denotes the transposed of a vector or matrix, and
with

X ¼
1 Xi1 X 2

i1
. . . Xk

i1

..

. ..
. ..

. ..
. ..

.

1 Xi0 X 2
i0

. . . Xk
i0

0
BB@

1
CCA Y ¼

Yi1

..

.

Yi0

0
BB@

1
CCA

and

X 0 ¼
1 Xi0þ1 X 2

i0þ1 . . . Xk
i0þ1

..

. ..
. ..

. ..
. ..

.

1 Xi2 X 2
i2

. . . Xk
i2

0
BB@

1
CCA Y 0 ¼

Yi0þ1

..

.

Yi2

0
BB@

1
CCA:

The final estimator of x0 is then defined as x̂x0 ¼ 1
2 X{̂{0 þ X{̂{0þ1ð Þ.

To choose the two different bandwidths involved in this two-step
estimation method we use the algorithm described in Sec. 2.3.

4. ESTIMATING THE NUMBER OF

DISCONTINUITIES IN A DERIVATIVE

An important issue in discontinuity detection is to determine the
number of discontinuities, which is often unknown in practice. Müller
and Stadtmüller (1999) propose a cross-validation criterion to estimate
the number of discontinuities that appear in the regression function itself.
In this section we generalize this method to estimate the number of
discontinuities appearing in the kth derivatives of the regression function.

For ease of comprehension we first explain the method when the
jump points occur in the first derivative (i.e., k ¼ 1). In this case it seems
natural to define the cross-validation quantity as follows:

CVð1ÞðnÞ ¼ 1

n� 1

Xn�1

i¼1

Yiþ1 � Yi

Xiþ1 � Xi
� ĝg

ð1Þ
�ði;iþ1Þ;nðX ð1Þ

i Þ
� �2

where n represents the number of discontinuities, X
ð1Þ
i ¼ ðXiþ1 þ XiÞ=2

and ĝg
ð1Þ
�ði;iþ1Þ;nðX

ð1Þ
i Þ is the leave-ð2Þ-out kernel estimator of the first

derivative of g, the regression function, based on the data ðX1;Y1Þ; . . . ;
ðXi�1;Yi�1Þ; ðXiþ2;Yiþ2Þ; . . . ; ðXn;YnÞ and adapted to the n estimated
jump points of the derivative function. This derivative estimator is
obtained by carrying out local polynomial fitting of order 2 on all n þ 1
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intervals separated by the estimated jump points, using cross-validated
bandwidths (adapted to estimation of the derivative function, see Müller
et al., 1987). Note that ðYiþ1 � YiÞ=ðXiþ1 � XiÞ represents the slope of the
line between Yiþ1 and Yi. We compare this slope with an estimator of the
first derivative of the regression function at the point ðXiþ1 þ XiÞ=2. It is
clear that we want the cross-validation quantity to be as small as possible.

This method generalizes easily to the case of jump points occuring
in the kth derivative of the regression function. Define X

ð0Þ
i ¼ Xi and

dð0Þi ¼ Yi for i ¼ 1; . . . ; n and put

X
ðkÞ
i ¼ 1

2
X

ðk�1Þ
iþ1 þ X

ðk�1Þ
i

� �
; dðkÞi ¼ dðk�1Þ

iþ1 � dðk�1Þ
i

X
ðk�1Þ
iþ1 � X

ðk�1Þ
i

for i ¼ 1; . . . ; n� k. The proposed generalization of the above cross-
validation quantity is then

CVðkÞðnÞ ¼ 1

n� k

Xn�k

i¼1

�
dðkÞi � ĝg

ðkÞ
�ði;iþkÞ;n

�
X

ðkÞ
i

��2
;

where ĝg
ðkÞ
�ði;iþkÞ;nðX ðkÞ

i Þ is the leave-ðk þ 1Þ-out kernel estimator of the
kth derivative function based on the data ðX1;Y1Þ; . . . ; ðXi�1;Yi�1Þ;
ðXiþkþ1;Yiþkþ1Þ; . . . ; ðXn;YnÞ and obtained via local polynomial approxi-
mation of order ðk þ 1Þ on each of the n þ 1 intervals defined by the n esti-
mated jumppoints of thekth derivative function, andusing cross-validation
bandwidth selectors adapted to the estimation of derivative curves.

Such a type of cross-validation quantity has been proposed by
Müller et al. (1987) in the context of bandwidth selection for estimating
the kth derivative of a regression function.

So in practice we calculate the cross-validation quantity for each
pre-specified number of discontinuities and then choose that number
(of discontinuities) which corresponds with the smallest cross-validation
value. To estimate the location of the pre-specified n discontinuities,
n ¼ 0; 1; 2; . . . we propose to use the fully data-driven bootstrap proce-
dure adapted to the derivative case. Finally we estimate the number of
discontinuities appearing in the kth derivative by

n̂n ¼ argmin
n2f0;1;...g

CVðkÞðnÞ:

Note that this data-driven procedure is developed for detecting jump
points in a derivative function of pre-specified order. See Sec. 6 for a brief
discussion on discontinuities appearing in several derivatives.
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5. SIMULATION STUDIES AND APPLICATION

5.1. Simulation Study

In this section we evaluate via a simulation study the data-driven
estimation procedure. We consider the regression functions

g1ðxÞ ¼
2xþ 1 if x 2 ½0; 0:5�
�2xþ 3 if x 2 �0:5; 1�

�

g2ðxÞ ¼ 10x2 if x 2 ½0; 0:5�
�20=7 x3 þ 20=7 if x 2 �0:5; 1�

(

g3ðxÞ ¼ 12x2 � 2xþ 2 if x 2 ½0; 0:5�
�12x2 þ 22x� 4 if x 2 �0:5; 1�,

(

and work with fixed equidistant design, xi ¼ i=n for i ¼ 1; . . . ; n.
The errors ei were taken to be Gaussian with variances s2 ¼ 0:1 or 0:5.
We present simulation results for sample sizes n ¼ 100 or 200. In the
upper panels of Fig. 5.1 we depict the true regression functions g1; g2
and g3 with typical simulated data sets for sample size n ¼ 100 and
s2 ¼ 0:01. Note that both functions g1 and g2 have a single jump discon-
tinuity at x0 ¼ 0:5 appearing in the first derivative. The size of the jump
is �4 for g1 and �85=7 for g2. The function g3 presents a single jump
discontinuity of size �48 at the point x0 ¼ 0:5 in the second derivative.
In the lower panels of Fig. 5.1 we present the true derivative functions
g
ð1Þ
1 ; g

ð1Þ
2 and g

ð2Þ
3 as solid curves along with smooth local quadratic

(respectively cubic) estimators as long-dashed curves and estimators
adapted to the estimated jump points as dotted curves. The adapted
estimates were obtained by local quadratic fitting for the functions g1
and g2 and by local cubic fitting for the function g3 on the two intervals
separated by the estimated jump point. Figure 5.1 is based on simulations
from an error with relatively small variance. This small error variance is
only considered for producing Fig. 5.1 (especially focusing on (d)–(f )), in
order to obtain estimated derivative curves that present nice visually.
Recall that estimation of derivatives curves is more difficult than estima-
tion of the regression function itself. For all other simulations, focusing
on the estimation of the jump points, we consider larger error variances.
Note, from Fig. 5.1 (a)–(c), that even with such a small error variance, it
is hard to tell from the data what is happening (smooth or non-smooth)
with the first (second) derivative.
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5.1.1. Estimation of the Localisation of the Jump

For the diagnostic function in (2.1), we used a standard Gaussian
kernel. In all simulation studies we considered 1000 simulations and
the number of bootstrap replicates was B ¼ 2000. For determining h1,
the smoothing parameter of the diagnostic function, we search over the

Figure 5.1. Upper panels: The true regression functions (solid curves) with a
typical simulated data set of size n ¼ 100 and variance s2 ¼ 0:01: Regression
functions (a) g1; (b) g2; and (c) g3. Lower panels: the true kth derivative (solid
curve) for the three functions along with a smooth local quadratic (for
(d) and (e)) and local cubic (for (f)) estimator (long-dashed curve) and an
unsmooth estimator (dotted curve). Regression function (d) g1, k ¼ 1; (e) g2,
k ¼ 1; and (f ) g3, k ¼ 2.
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set of bandwidths h1;i ¼ h0r
i, for i ¼ 0; 1; 2; . . . , with r ¼ 0:9 and h0 ¼ 0:2

(respectively h0 ¼ 0:1) when we study the functions g1 and g3 (respec-
tively g2). For the set of potential bandwidths h2; j ; j ¼ 0; . . . ;H, in the
least-squares step we took h2; j ¼ 0:03þ 0:015j for j ¼ 0; . . . ; 7.

In Table 5.1 we summarize the simulation results for the functions
g1; g2 and g3. Presented are the means and standard deviations of x̂x0
across the 1000 simulations. Figure 5.2 presents boxplots of the 1000
estimated values of x0 for all three functions. If we compare the results
of the two functions that present a jump in the first derivative (g1 and
g2) we can see that the results for the function g1 are not as good as those
for the function g2. This is related to the fact that the size of the jump in
the derivative function is smaller for the function g1.

Table 5.1. Simulation results for the functions g1 and g2 having one discontinuity
in the first derivative at x0 ¼ 0:5, and for the function g3 having one discontinuity
in the second derivative at x0 ¼ 0:5.

s2 ¼ 0:1 s2 ¼ 0:5

n ¼ 100 n ¼ 200 n ¼ 100 n ¼ 200

g1 Mean of x̂x0 0.503200 0.501500 0.503630 0.502155
SD of x̂x0 0.041326 0.038776 0.084613 0.068152

g2 Mean of x̂x0 0.496810 0.499380 0.491730 0.488905
SD of x̂x0 0.017943 0.014585 0.041763 0.035615

g3 Mean of x̂x0 0.533650 0.495300 0.560300 0.509960
SD of x̂x0 0.073594 0.047186 0.121593 0.088881

Figure 5.2. Boxplots of the 1000 estimated values x̂x0 for x0 for the functions
(a): g1, (b): g2 and (c) g3, for sample sizes n ¼ 100 and 200 and s2 ¼ 0:1 and 0.5.
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5.1.2. Estimation of the Number of Discontinuities

For each of the functions g1; g2 and g3 we also applied the cross-
validation method for determining the number of discontinuities. Here
we used 100 simulations and B ¼ 1000 bootstrap samples. Table 5.2
summarizes the simulation results for the three functions for sample
sizes n ¼ 100 and n ¼ 250 and s2 equal to 0.1 and 0.5. Presented
are the frequencies (out of 100) that the estimated values n̂n correspond
to the specified values. As an illustration we show in Fig. 5.3 the
cross-validation quantity as function of n for a simulated data set of
size n ¼ 100 generated from the function g1 with s2 ¼ 0:1. We con-
clude that for this sample the number of discontinuities should be
taken to be one. From Table 5.2 we see that the estimated number
of discontinuities is positively biased in the three examples. In fact
overestimation of the number of discontinuities is less harmful than
underestimation of this number. Indeed, if a point is falsely selected
as being a location where the derivative function is discontinuous, then
as a consequence the resulting derivative estimate might be discontin-
uous at that point too. If, on the other hand a discontinuity point
would not be detected, then this would result in a far too smooth
behaviour of the estimated derivative function in the neighbourhood
of such a point.

Table 5.2. Simulation results for the cross-validation choice of n.

0 1 2 3 4

g1 n ¼ 100 s2 ¼ 0:1 0 78 12 10 0
One discontinuity in s2 ¼ 0:5 0 73 16 10 1
the first derivative n ¼ 250 s2 ¼ 0:1 0 83 8 9 0

s2 ¼ 0:5 0 79 11 9 0

g2 n ¼ 100 s2 ¼ 0:1 1 76 15 6 2
One discontinuity in s2 ¼ 0:5 1 73 17 8 1
the first derivative n ¼ 250 s2 ¼ 0:1 0 86 4 9 1

s2 ¼ 0:5 0 83 5 12 0

g3 n ¼ 100 s2 ¼ 0:1 2 64 22 8 4
One discontinuity in s2 ¼ 0:5 2 61 26 5 7
the second derivative n ¼ 250 s2 ¼ 0:1 0 76 7 12 5

s2 ¼ 0:5 1 70 23 2 4
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5.2. Application

For the Motorcycle data we applied the data-driven method to
search for jump discontinuities in the first derivative of the regression
function, since we aim at finding changes in direction in the acceleration.
For the smoothing parameter h1 in the diagnostic step we searched over
the set h1;i ¼ h0r

i with h0 ¼ 7 and r ¼ 0:9. For the interval length
in the least-squares step we used the set of potential bandwidths
h2;j ¼ 3:5þ 1:0j for j ¼ 0; 1; . . . ; 8. The cross-validation quantity as func-
tion of n is represented in Fig. 5.4, and from this we fix the number of
discontinuities to be three. The data-driven estimation method provided
the estimations 14.2, 24.1 and 32.4 for the three change points. These
results agree with those obtained by Speckman (1995) who uses a semi-
parametric change point method to identify the number and the locations
of the change points. Figure 5.5 shows the data along with an adaptive
local linear fit.

6. DISCUSSION

In the proposed procedure the estimation of the regression function
itself was done as follows. The n estimated jump discontinuities in the kth
derivative define n þ 1 intervals and on each of these intervals we obtain
the local linear fit. These fits are then joined together to get the global

Figure 5.3. Cross-validation sum of squares as function of the number of jump
points for a simulated data set of size n ¼ 100 from the function g1 with s2 ¼ 0:1.
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estimator for the regression function. This estimation method does not
use the fact that the jump discontinuities occur in the kth derivative of
the function. One way to use more directly the information about jump
discontinuities in the kth derivative is to fit splines of order k with knots

Figure 5.5. The motorcycle data (points) with a local linear fit adapted to
change-points.

Figure 5.4. Cross-validation sum of squares as function of the number of jump
points for the motorcycle data.
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at the estimated n jump discontinuities. In this way, the resulting
estimator would have continuous first k � 1 derivatives. Another way
to include the information about the non-smoothness of the kth deriva-
tive in the estimation of the regression function itself is to estimate
the kth derivative by a local polynomial fit of degree k þ 1, adapted
to change points and to integrate it k times to reconstruct the function
itself.

In order to appreciate the quality of the different proposed
approaches to estimate the regression function with a jump in one deriva-
tive, we present in Fig. 6.1 the true regression function g1 in solid line
with the local linear fits joined together (dotted curve), the estimated
curve obtained by integration of the estimate of the first derivative
(long-dashed curve) and finally the linear spline fit (dotted-dashed curve).
The right panel presents a zoom-in of the left panel and shows more in
detail what happens around the change-point. We conclude that there
are little differences between the three proposed estimated curves.
Nevertheless the spline fit performs slightly better.
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Figure 6.1. The true regression function g1 (solid curve) with the local linear
fits joined together (dotted curve), the estimated curve obtained by integration
of the estimate of the first derivative (long-dashed curve) and finally the
linear spline fit (dotted-dashed curve). The right panel shows a zoom-in of the left
panel.
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